Studies of corrosion behaviour in acid environment of binary Mg-Li alloys for plastic forming

A. Białobrzeski¹,a,b*, K. Saja¹, M. Żmudzińska¹
¹Foundry Research Institute, Zakopiańska 73, 30-418 Kraków,
bUniversity of Bielsko-Biała, Willowa 2, 43-309 Bielsko-Biała
*Corresponding author. E-mail address: abial@iod.krakow.pl

Received 12.07.2011; accepted in revised form 27.07.2011

Abstract

The article discusses studies and corrosion tests of binary Mg-Li alloys for plastic forming examined in an acid medium (5% HCl solution) for the time of 0-144 hours. In short it can be stated that corrosion of the examined Mg-Li alloys in 5% HCl solution proceeded in a similar mode in all the studied alloys, regardless of the lithium content.

Keywords: Ultralight Mg-Li alloys, Corrosion in acid media

1. Corrosion tests of Mg-Li alloys in acid medium

The object of corrosion studies were as-cast samples of Mg-Li alloys of 30 x 20 x 10 mm dimensions designated as:
- alloy no. 1 containing 3.54% Li (monophase α hcp alloy),
- alloy no. 2 containing 8.15% Li (two-phase alloy: β phase and α+β eutectic),
- alloy no. 3 containing about 13.9% Li (monophase β bcc alloy).

Laboratory tests of the corrosion behaviour of Mg-Li alloys were carried out by immersion of samples at ambient temperature, according to the following standards: PN-76/H-04601, PN-78/H04610, PN EN ISO 16151. The principle of the method consisted in subjecting the samples of Mg-Li alloys to the effect of a solution prepared in a laboratory. The immersion test was conducted in 5% aqueous solution of HCl. To prepare this solution, analytically pure chemical reagents and redistilled water were used. The duration of individual measurement cycles was 6 h, 24 h, 48 h, 72 h and 144 h.

Samples of the examined alloys (3 samples from each melt) were subjected to corrosion tests in accordance with the adopted programme of research. Figures 1 and 2 show in graphic form the results of corrosion-induced weight loss and corrosion rate.
Fig. 1. Comparison of the results of the corrosion-induced weight loss test carried out for Mg-Li alloys in 5% HCl solution – corrosion-induced weight loss K_m in time

Fig. 2. Comparison of the results of the corrosion-induced weight loss test carried out for Mg-Li alloys in 5% HCl solution – weight loss-related corrosion rate V_m in time
Figures 3-4 show surface condition of samples of the tested alloys after 6, 72 and 144 hours of being immersed in 5% HCl solution.

Fig. 3. Corrosion behaviour of Mg-Li alloy samples after 6 h of being immersed in 5% HCl solution

Fig. 4. Corrosion behaviour of Mg-Li alloy samples after 72 h of being immersed in 5% HCl solution

Fig. 5. Corrosion behaviour of Mg-Li alloy samples after 144 h of being immersed in 5% HCl solution

Macrographic studies were also carried out on the precipitates of reaction products on the surface of the examined alloy samples. Figures 6-8 show selected examples of the surface topography of the examined alloys.

Fig. 6. Surface topography of alloy 1 sample (after 6h of being immersed in 5% HCl solution, 7x)
2. Summary

Studies of the weight loss-related corrosion of Mg-Li alloys show a very large weight loss K_{m} during the first measuring period (i.e. after 6 hours), reaching from 48.8% to 53.4% - in all the examined samples, as illustrated in Figure 1. This suggests a rapid transition of metal into solution in a short period of time. In subsequent measuring cycles, the weight of the measured test samples hardly changed. The rate V_{m} of the weight-loss induced corrosion was the highest during the first 6 hours, reaching the level of 811 - 867 mg/cm2 in 24 hours, as shown in Figure 2. In subsequent measurement periods it decreased, reaching a value of 33 - 36 mg/cm2 in 24 hours after 144 h of the corrosive effect of the medium. The surface condition of the examined alloys indicated an uneven corrosion; the surface of the test samples was coated with a white bloom, numerous pittings were also observed.

Summing up, the corrosion of the examined Mg-Li alloys in 5% HCl solution proceeded similarly in all the studied alloys, regardless of the lithium content.

Acknowledgements

This article was prepared under Project No. POIG.01.03.01-00-015/09 "Advanced materials and technologies for their production," and, conducted at the Foundry Research Institute, Task III. 5.1 Ultralight profiles extruded from the new magnesium-lithium alloys.

References

